Estimation of Average Local-to-Unity Roots in Heterogenous Panels
نویسنده
چکیده
This paper considers the estimation of average autoregressive roots-near-unity in panels where the time-series have heterogenous local-to-unity parameters. The pooled estimator is shown to have a potentially severe bias and a robust median based procedure is proposed instead. This median estimator has a small asymptotic bias that can be eliminated almost completely by a bias correction procedure. The asymptotic normality of the estimator is proved. The methods proposed in the paper provide a useful way of summarizing the persistence in a panel data set, as well as a complement to more traditional panel unit root tests. JEL classification: C22, C23.
منابع مشابه
PREDICTIVE REGRESSION UNDER VARIOUS DEGREES OF PERSISTENCE AND ROBUST LONG-HORIZON REGRESSION by
The paper proposes a novel inference procedure for long-horizon predictive regression with persistent regressors, allowing the autoregressive roots to lie in a wide vicinity of unity. The invalidity of conventional tests when regressors are persistent has led to a large literature dealing with inference in predictive regressions with local to unity regressors. Magdalinos and Phillips (2009b) re...
متن کاملGMM Estimation of Autoregressive Roots Near Unity with Panel Data
This paper investigates a generalized method of moments (GMM) approach to the estimation of autoregressive roots near unity with panel data and incidental deterministic trends. Such models arise in empirical econometric studies of Þrm size and in dynamic panel data modeling with weak instruments. The two moment conditions in the GMM approach are obtained by constructing bias corrections to the ...
متن کاملApplication of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
متن کاملPoint Optimal Testing with Roots That Arepoint Optimal Testing with Roots That Are Functionally Local to Unity
Limit theory for regressions involving local to unit roots (LURs) is now used extensively in time series econometric work, establishing power properties for unit root and cointegration tests, assisting the construction of uniform confidence intervals for autoregressive coefficients, and enabling the development of methods robust to departures from unit roots. The present paper shows how to gene...
متن کاملVibration Optimization of Fiber-Metal Laminated Composite Shallow Shell Panels Using an Adaptive PSO Algorithm
The paper illustrates the application of a combined adaptive particle swarm optimization (A-PSO) algorithm and the finite strip method (FSM) to the lay-up optimization of symmetrically fiber-metal laminated (FML) composite shallow shell panels for maximizing the fundamental frequency. To improve the speed of the optimization process, adaptive inertia weight was used in the particle swarm optimiz...
متن کامل